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Abstract— Patients with focal medically refractory epilepsy
(MRE) suffer from recurrent seizures that cannot be controlled
with anti-epileptic drugs. These patients are candidates for
surgical interventions in hopes of treating the epileptogenic
zone, a cortical region indispensable to seizure generation. Tech-
niques used by clinicians in pre-surgical planning include im-
plantation of stereoelectro-encephalography (SEEG) electrodes
for high spatial and temporal resolution. The localization and
anatomical labeling of SEEG electrode contacts are essential,
but time-consuming tasks often done manually by trained
clinicians. We propose a threshold clustering-based algorithm
for semi-automatically localizing and anatomically labeling
SEEG contacts, using a computed tomography brain scan, a
brain-mask, and positions of the entry and exit points for each
electrode. The centroids of each outputted cluster are computed
and compared against the positions of the manually labeled
contacts. These centroids are then anatomically labeled using
Destrieux and Desikan-Killany brain parcellation atlases. Our
algorithm was applied on three MRE patients who underwent
surgical treatment. The largest average error between the
computed centroids and manually labeled contacts was 0.493
mm. The algorithm was completed within minutes for each
patient without the need for trained experts.

I. INTRODUCTION

Focal epilepsy is a neurological disorder that affects more
than 60 million people worldwide [1]. Approximately 30%
of these cases are classified as medically refractory epilepsy
(MRE), wherein patients suffer from recurrent seizures that
cannot be controlled by anti-epileptic drugs [1], [2], [3], [4],
[5]. Patients with MRE are considered candidates for surgical
treatment in hopes of removing the epileptogenic zone (EZ)
[6], [7], a region of the cerebral cortex found to be indispens-
able for seizure generation. Preserving eloquent cortex is the
other primary goal of epilepsy surgery. [8]. Clinicians utilize
intracranial EEG (iEEG) recordings, which include elec-
trocorticography (ECoG) and stereo-electro-encephalography
(SEEG), to obtain high intracortical spatial and temporal res-
olution measurements, complementing their analyses through
noninvasive recording methods, such as functional magnetic
resonance imaging and magnetoencephalography [7], [9],
[10].

Correct interpretation of iEEG recordings relies on precise
knowledge of the anatomical location of each electrode [6],
[11], [12]. However, the localization of iEEG electrodes in
post-implantation images remains a time-consuming proce-
dure as identification is often done manually by trained
clinicians, requiring advanced 3D visualization tools and
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detailed knowledge of MRI-based neuroanatomy to minimize
errors [5], [11], [12]. The manual localization process is
also prone to operator errors, and as such, has motivated
the development of methods to automate the localization
procedure.

Previous studies have proposed semi-automatic or auto-
matic segmentation algorithms for both ECoG subdural grids
and SEEG depth electrodes that provide anatomical labeling
by use of brain atlases, which map brain image voxels to
anatomical labels [13], [14]. These approaches tend to either
be optimized for ECoG or have lower localization accuracy
for depth electrodes used in SEEG monitoring. Arnulfo et al.
[6] developed a threshold-based segmentation algorithm for
localizing SEEG depth electrodes in computed tomography
(CT) images, achieving errors of 0.5 mm ± 0.06 mm across
12 subjects. Despite high localization accuracy, the algorithm
requires an input of electrode size and spacing, which are
not always available for each patient, limiting the flexibility
of the approach [6]. The Curry Neuroimaging Suite, on
the other hand, offers a high-quality software for automatic
localization and anatomical labeling of depth electrodes, but
is a costly option for the task [15].

While there exist algorithmic approaches that can localize
various types of iEEG electrode arrays (i.e. ECoG), there are
few methods that are optimized solely for the localization
of SEEG depth electrodes that are affordable, open-source,
accurate, and require minimal user input. We propose a semi-
automatic approach for segmenting and labeling SEEG depth
electrodes in CT scans using a threshold-based approach and
brain parcellation atlases that requires only two manually
labeled contacts per SEEG electrode. The algorithm relies
on the positions of the bounding (innermost and outermost)
contacts along each electrode. It can take in a a corre-
sponding brain-mask that strips the skull in the CT image
as well, which can be derived from T1 MRI images via
FreeSurfer. The algorithm provides an interpretable approach
that reduces the need for trained clinicians in the localization
procedure. Further, by segmenting entire point clouds asso-
ciated to each contact, we can robustly assign anatomical
labeling to each contact. We implemented the proposed
algorithm in Python and is open to contributions at: https:
//github.com/adam2392/neuroimg_pipeline.

II. METHODS
A. Data Acquisition

In this study, we perform electrode localization for three
patients (mean age 30.0 years) that were surgically treated
for drug-resistant epilepsy. All patients underwent invasive
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Fig. 1. Sequential schematic for the steps of the electrode localization algorithm. The bold arrows show the inputs ( Brain-mask, a minimal set of labeled
contacts and CT image) and outputs (predicted contact centroids and the final clusters of contacts per electrode) to the algorithm. Note that besides the
labeled entry/exit points of each electrode (Asparse), the algorithm requires no other manual input.

presurgical evaluation using stereo-EEG (SEEG) depth elec-
trode implantations to localize the EZ and delineate elo-
quent areas. Prior to implantation, T1-weighted MRI was
obtained. For each patient, the number and location of
implanted electrodes were pre-operatively determined by a
pre-implantation hypothesis based on non-invasive data. The
decisions of clinicians in determining the need for invasive
monitoring and the placement of the depth electrodes were
made independently from this work and based solely on clin-
ical necessity. Post-implantation CT images were acquired
following surgery to ensure accurate placement and labeling.
A 3D reconstruction was produced to visualize electrode
placements using the Curry NeuroImaging Suite (NeuroScan,
El Paso, TX). The electrode locations were then determined
by visual inspection and agreement by at least two clinical
experts. T1 and CT data were processed using FreeSurfer,
FSL, and Fieldtrip Toolbox [16], [17], [18]. The data used
in this study were deidentified and assigned study numbers,
e.g. ”la04”, which were given with no specific ordering. All
data were acquired with approval of the Institutional Review
Board (IRB). The digitized data used for this study were
stored in an IRB-approved database compliant with Health
Insurance Portability and Accountability Act (HIPAA) regu-
lations.

B. Electrode Localization

The electrode localization algorithm outputs a set Apred

of labeled (x, y, z)-coordinates for each contact along each
electrode. The CT image and brain-mask in CT space were
provided as input images. The brain-masks were obtained
as part of the output from the recon-all FreeSurfer

command. A sparse set Asparse of manually labeled contacts
containing coordinates for the bounding (i.e. innermost and
outermost) contacts for each electrode was also given as
input. The sequence of processing steps performed by the
algorithm to localize and label all electrodes is outlined by
Figure 1. As a preliminary pre-processing step, the user-
specified points Asparse were transformed from (x, y, z)-
space to CT space by applying an affine transform.

Masking and normalization. CT voxel intensities that
corresponded to electrodes were generally higher than that
of tissue voxels, but were similar to that of dense bone within
the skull. To strip the skull, the brain-mask was applied to the
CT image, though the skull was often not stripped perfectly.
The output masked image preserved voxels of the original
CT image in which the corresponding voxel in brain-mask
was nonzero. The masked CT image was then normalized
by dividing each voxel value by a factor of 255, resulting in
all voxel values residing in the real interval [0, 1].

Threshold Clustering. A voxel intensity threshold of
0.630 was set to binarize the image. A set Athresh of disjoint
clusters from the threshold-masked image were determined
and numerically labeled using the label method from the
scikit-image library. A voxel was considered to be in a cluster
if at least one of its neighbors of equal intensity was also in
the cluster. Two voxels were considered to be neighbors if
they were within two orthogonal hops from each other.

Cylindrical Filtering. Since SEEG depth electrodes are
cylindrical in shape, the coordinates for the bounding con-
tacts of each electrode were used to construct cylindrical
boundaries with a radius of 4 voxels. These cylindrical



boundaries were used to group the clusters in Athresh to a
particular electrode and remove any clusters that did not fall
into any of the cylindrical boundaries. Supposing that there
are J electrodes, a cluster Ci ∈ Athresh was assigned to an
electrode j ∈ {1, 2, . . . , J} if at least one point in Ci fell
within the cylinder formed by the bounding contacts ~pj,1 and
~pj,2 for electrode j. For a given cluster, each point ~q ∈ Ci

was considered to fall within the cylinder of radius r = 4 for
electrode j if it satisfied each of the following inequalities

(~q − ~pj,1) · (~pj,2 − ~pj,1) ≥ 0 (1)

(~q − ~pj,1) · (~pj,2 − ~pj,1) ≤ ‖~pj,2 − ~pj,1‖22 (2)

‖~q − ~pj,1‖2 −
(~q − ~pj,1) · (~pj,2 − ~pj,1)

‖~pj,2 − ~pj,1‖2
≤ r (3)

Inequalities (1) and (2) determine whether point ~q lies
between the two circular faces of the cylinder and inequality
(3) determines whether the point lines within the curved
surface of the cylinder. We define the set Acyl,j to be the
set of clusters assigned to electrode j. Labels were assigned
to each cluster in Acyl,j based on the proximity of the cluster
centroid to the innermost labeled contact given by the user
for each electrode j.

Process Abnormal Clusters. In most cases, the brain-
mask did not fully strip the skull, resulting in clusters near
the skull being oversized relative to other clusters, each of
which correspond to the contacts along electrodes. These
clusters were reduced in size by only including points that
fall within a sphere of radius r = 4 voxels centered at the
outermost labeled contact given by the user. Another abnor-
mality that arose was clusters that appeared to be merged.
These clusters tended to be the innermost clusters since
these contacts typically had the greatest physical deformation
during implantation, resulting in the contacts being spatially
closer in the CT image. These “merged clusters” tended
to contain twice the amount of voxels as other clusters
found, but smaller than the skull clusters. These clusters were
separated into two using k-means clustering with parameter
k = 2. As a heuristic for identifying merged clusters and
skull clusters, clusters containing between 50 and 200 voxels
were processed as merged clusters and clusters containing
more than 200 voxels were processed as skull clusters.

Interpolate Centroids. The previous two processing steps
aimed to account for artefacts of using too low of a threshold,
which can cause clusters to merge. To correct artefacts of
using too high of a threshold, we interpolated centroids
between adjacent clusters separated by a large distance,
accounting for voxel clouds that were masked out. Since
contacts are generally evenly spaced along the electrode
axis, to obtain a representative point for potentially masked
out clusters, we interpolated evenly spaced points between
adjacent clusters that were sufficiently far apart. A gap
tolerance g of 13 voxels was used to determine the number of
points to be interpolated between adjacent cluster centroids.

The number of points to interpolate between adjacent cluster
centroids pi, pi+1 was computed as b 1g ‖pi+1 − pi‖2c. These
new points were appended to each set Acyl,j , constructing
the corresponding set Apred,j . The final set containing each
Apred,j will be denoted Apred.

III. RESULTS

We performed semi-automatic electrode algorithm on three
patients. We used the corresponding CT image and brain-
mask as well as a list bounding contact coordinates for
each patient. Images were fully localized manually and
used as the validation data for evaluating the performance
of the algorithm. Errors were computed as the Euclidean
distance between each manually labeled contact and the
cluster centroid with the corresponding label. Across three
patients, 30 electrodes (479 contacts) were localized (Figure
2). For patient la04, 113 contacts were segmented with a
Euclidean distance error of 0.2973 ± 0.2340 mm. For patient
la05, 186 contacts were segmented with a mean Euclidean
distance error of 0.4927 ± 0.7384 mm. For patient la12, 180
contacts were segmented with a mean Euclidean distance
error of 0.4174 ± 0.5899 mm (Figure 3).

Fig. 2. Examples of localized electrodes in the brain. The left column
shows three-dimensional reconstructions from FreeSurfer used by clinicians
for pre-implantation planning for each of the three patients in this cohort –
la04, la05, and la12 ordered from top to bottom. The right column shows
the respective Euclidean distance errors of the predicted centroids against
the manually labeled contact coordinates.



Fig. 3. Error metric for two electrodes of patient la12. The figure overlays
the positions of the centroids predicted by the algorithm (red crosses) on the
positions of the manually labeled contacts (blue dots) along the principal
component with the largest singular value, which should correspond to the
electrode axis. The top image pictures the standard localization performed
by the algorithm while the bottom image shows an error when interpolating
centroids, failing to add an additional point between the centroids labeled
I7 and I9.

IV. DISCUSSION

The task of manual localization and neuroanatomical la-
beling of SEEG contacts is a tedious and error-prone process
that consumes several hours of working time of trained
clinicians and with significant detrimental consequences if
not performed correctly. At the same time, this continues to
be the widely used method for localization and labeling of
SEEG electrodes with few standardized tools to automate the
process. In this study, we examine a threshold-based cluster-
ing approach to segmenting and localizing SEEG electrodes
in brain scans. Although we utilized a brain-mask in this
study derived from T1 MRI, we conjecture that utilizing an
automated skull-stripping technique on the CT image would
suffice in future studies. In our preliminary study on three
patients, we showed the localization algorithm achieves an
average error of less than 0.5 mm with only the bounding
contact coordinates for each electrode. The semi-automatic
localization process was performed within one minute for
each patient and provides a fast, robust anatomical labeling
that would otherwise require the time of trained experts.
While this study exclusively utilized CT images, we can use
any type of brain scan (e.g. T1-weighted MRI, T2-weighted
MRI) so long as the image has a corresponding brain-mask
to strip the skull. Future work will entail segmenting images
for a larger cohort of patients, reducing the amount of input
from users, and evaluating the performance of a suite of
different approaches to robustly localize and label invasive
SEEG implantations in epilepsy patients.
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