
WaveNet Autoencoder with Contrastive Predictive Coding for

Music Translation

Chester Huynh, Silu Men, David Shi, Maggie Wang

1 Introduction

Background In image-to-image translation, the
goal is to transform an input image in the source
domain to an output image that bears the appear-
ance of the target domain but preserves the content
of the input [1]. A similar idea can be applied to mu-
sical audio-to-audio translation. We develop an un-
supervised music translation model capable of trans-
lating a performance of a piece (content) played by
one instrument (appearance) into a performance of
the same piece played by another instrument.

Related Work The Universal Music Translation
(UMT) network [2] uses a WaveNet (WN) au-
toencoder to translate between instrument domains,
where a single encoder is shared across domains and
each has a separate decoder. A domain confusion dis-
criminator on the latent space discourages domain-
specific embeddings.
Contrastive Predictive Coding (CPC) [3] seeks to

preserve the mutual information between the current
context of the signal and future signal data points
by making predictions in latent space. CPC uses an
encoder, genc, to map the input x to latent represen-
tations z, which are then fed into an autoregressive
model, gar, to produce context latent representations
c. The model is trained to minimize InfoNCE, a prob-
abilistic contrastive loss.

2 Methods

Dataset We performed training and inference on
the MusicNet dataset [4], and evaluated on 3 do-
mains: Solo Cello, Solo Violin, and Beethoven Solo

Piano. We used an 80-10-10 split, yielding 32963 sec
of training data, 4683 sec of validation data, and 5001
sec of testing data. We further evaluated our model
on samples of 0.5-second, single-pitch, monophonic
recordings of keyboard and strings from the NSynth
test set [5].

Adding CPC to UMT In an attempt to bet-
ter capture long-range temporal dependencies, we re-
placed UMT’s encoder with CPC while preserving
UMT’s discriminator and WaveNet decoders. Fig. 3
provides a high-level view of our architecture. For
CPC’s genc, we used a 6-layer strided convolutional
neural network. For CPC’s gar, we tried two vari-
ants: a GRU with a 64-dimensional hidden state
(Fig. 4) and UMT’s original WaveNet-like encoder
module (Fig. 5). We refer to the full model variants
as CPCGRU+WNdec and CPCWN+WNdec.
z and c were used to compute the InfoNCE loss

(Eqn. 1) with 5-step-ahead predictions (Algorithm 2).
c was upsampled and used as the conditioning signal
for each domain-specific WaveNet decoder.

Let xj denote a raw audio sample from the jth

domain, c denote the output of gar, Dj denote the
WaveNet decoder corresponding to the jth domain,
and C denote the domain confusion discriminator.
The overall loss function of our model was∑

j

∑
xj

L(Dj(c), xj)− λL(C(xj), j) + InfoNCE(z, c)

Training and Inference Due to limited compute,
we performed training and inference on only the Solo
Cello, Solo Violin, and Beethoven Solo Piano Mu-
sicNet domains. We prepended our genc and gar
CPC modules to frozen pretrained UMT decoders.

1



CPCGRU+WNdec was trained for 100 epochs (25
min/epoch) on 0.625-second raw audio clips from the
training sets of each of the domains using a batch
size of 8 and an Adam optimizer with learning rate
= 5e-4 and learning rate decay = 0.995 after each
epoch. We used mainly UMT default hyperparam-
eters, with a few modified for hardware compatibil-
ity. Due to time constraints, CPCWN+WNdec was
trained for only 80 epochs. During inference, for each
instrument domain, we sampled one 2-sec raw audio
clip from the testing set and translated the clip to all
three instrument domains.

Evaluation For both datasets, we qualitatively lis-
tened to translated samples. For MusicNet, we ran a
cycle consistency test on a small subset (n = 2). For
NSynth, we translated 0.5-sec single-pitch recordings
of acoustic keyboard and strings to the cello, vio-
lin, and piano domains and measured the similar-
ity between each translated recording and an orig-
inal recording in the output domain using normal-
ized cross-correlation (NCC) [5]. We also visually
inspected chromagrams, a pitch class profile, to as-
sess how well pitch was preserved after translation. A
good translation would correlate well with the origi-
nal and preserve pitch.

Figure 1: Chromagrams for acoustic keyboard sam-
ple translated to piano and violin using UMT,
CPCGRU+WNdec, and CPCWN+WNdec.

3 Results

Qualitative The MusicNet translated samples
(available here) generated using UMT had the least
amount of perceivable noise, pitch distortion, and
instrument blending, followed by CPCGRU+WNdec

and CPCWN+WNdec. Chromagrams of the trans-
lated NSynth samples indicated that pitch preserva-
tion was comparable between CPCGRU+WNdec and
UMT but that CPCWN+WNdec had relatively poor
pitch preservation (Fig. 1).
Quantitative Table 1 shows our models have higher
NCC on cello, comparable on violin, and worse on
piano. Table 2 shows we perform better on cello,
better on violin, and worse on piano.

Model Cello Violin Piano
1 0.49± 0.20 0.55± 0.25 0.52± 0.26
2 0.61 ± 0.24 0.53± 0.25 0.41± 0.25
3 0.57± 0.28 0.53± 0.19 0.48± 0.24

Table 1: Average NCC between a translated and an
original recording. Models: (1) pretrained UMT, (2)
CPCGRU+WNdec, (3) CPCWN+WNdec.

4 Discussion

CPCGRU+WNdec and CPCWN+WNdec had over-
all worse performance than the baseline pretrained
UMT model. This could be due to a variety of
factors, including hardware-restricted hyperparame-
ters and loss of semantic information from the input
when downsampled by genc. CPCWN+WNdec’s poor
performance could be attributed to our decision to
compress the genc output into a single channel for
compatibility with UMT’s WaveNet encoder design.
While this gar performed poorly, transformers, em-
ployed by the Jukebox model, [6] have had success in
music generation. Though CPCGRU+WNdec’s quan-
titative NCC and chromagram results were compa-
rable to UMT, a qualitative listen to the translated
samples revealed worse quality. This could be due
to our evaluation metric favoring pitch over other as-
pects of musicality, such as dynamics, tone, and tim-

2

https://github.com/ChesterHuynh/Wavenet-CPC-Music-Translation/tree/master/samples


bre. Though we did not achieve SOTA performance,
CPCGRU+WNdec is promising, so the idea of combin-
ing CPC with Wavenet decoders for musical audio-
to-audio translation warrants further exploration.

References

[1] Taesung Park, Alexei A. Efros, Richard Zhang,
and Jun-Yan Zhu. Contrastive Learning
for Unpaired Image-to-Image Translation.
arXiv:2007.15651 [cs], August 2020.

[2] Noam Mor, Lior Wolf, Adam Polyak, and Yaniv
Taigman. A Universal Music Translation Net-
work. arXiv:1805.07848 [cs, stat], May 2018.

[3] Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
Representation Learning with Contrastive Pre-
dictive Coding. arXiv:1807.03748 [cs, stat], Jan-
uary 2019.

[4] John Thickstun, Zaid Harchaoui, and Sham
Kakade. Learning Features of Music from
Scratch. arXiv:1611.09827 [cs, stat], April 2017.

[5] Jesse Engel, Cinjon Resnick, Adam Roberts,
Sander Dieleman, Douglas Eck, Karen Simonyan,
and Mohammad Norouzi. Neural Audio Synthe-
sis of Musical Notes with WaveNet Autoencoders.
arXiv:1704.01279 [cs], April 2017.

[6] Prafulla Dhariwal, Heewoo Jun, Christine Payne,
Jong Wook Kim, Alec Radford, and Ilya
Sutskever. Jukebox: A Generative Model for Mu-
sic. arXiv:2005.00341 [cs, eess, stat], April 2020.

[7] Aaron van den Oord, Sander Dieleman, Heiga
Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and
Koray Kavukcuoglu. WaveNet: A Generative
Model for Raw Audio. arXiv:1609.03499 [cs],
September 2016.

3



5 Appendix

5.1 InfoNCELoss Equation and Pseudocode

For an input sequence x = {x1, . . . , xt} with latent representation z = {z1, . . . , zn} and context latent
representation c = {c1, . . . , cn}, we compute the InfoNCE loss as

LInfoNCE = −EX

[
log

fk(xt+k, ct)∑
xj∈X fk(xj , ct)

]
(1)

where fk(xt+k, ct) = exp(zTt+kWkct) estimates the density ratio p(xt+k|ct)
p(xt+k)

, and X = {x1, ..., xN} consists of

one positive sample from p(xt+k|ct) and N − 1 negative samples from p(xt+k).

Algorithm 1 Get the negative samples

procedure get neg z(z, k, t,n rep) ▷ The encoded sample, future time step, current time
step and number of repetitions

Z← length(z) ▷ length of the encoded sample
neg idx← [0, 1, ..., t+ (k − 1), t+ (k + 1), ...,Z] ▷ Make a range of neg idx ∀ t in batch
neg samples← z[0, 1, ..., t+ (k − 1), t+ (k + 1), ...,Z] ▷ Make the negative samples ∀ t in batch
neg samples ← randomly sample with replacement rows in neg samples
return neg samples ▷ Return the negative samples

end procedure

4



Algorithm 2 Forward pass of the InfoNCELoss

procedure forward(z, c, n rep) ▷ The encoded sample, context vector and number of
repetitions

loss← 0 ▷ initalize loss
B ← length(z[0]) ▷ get number of batches
Z← length(z) ▷ length of the encoded sample
t← randint(0,Z) ▷ sample a random timestep t
c t← c[0 : B, t] ▷ get context vector for specific timestep
for k ← 1,prediction steps do

neg samp← GET NEG Z(z, k, t, n rep) ▷ get negative samples
linear←Wk[k − 1]
pred← linear(c t) ▷ compute Wkct
pos samp← z[t+ k] ▷ get positive sample at t+ k ∀ batches
f k pos← diag(pos samp ∗ pred) ▷ get positive matched batches’ fk’s
f k neg ← diag(neg samp ∗ pred) ▷ get negative matched batches’ fk’s
f k ← stack(f k pos, f k neg) ▷ stack positive and negative
log f k ← mean(LogSoftmax(f k), dim = 2) ▷ apply logSoftmax and average across replicates
loss← loss− log f k[:, 0] ▷ update loss with the positive sample ∀ batches

end for
loss← loss

prediction steps×B
return loss ▷ Return the calculated loss

end procedure

5



5.2 Supplemental Results

Figure 2: Average training and testing loss of CPCGRU+WNdec (left) and CPCWN+WNdec (right) models
over 1000 mini-batches for each epoch. Due to time constraints, we trained CPCGRU+WNdec for 100 epochs
and CPCWN+WNdec for 80 epochs. The loss for CPCWN+WNdec is evidently more volatile, which suggests
that further modifications to the model hyperparameters could be made.

Model Cello Violin Piano
1 0.92 0.40 0.84
2 0.96 0.49 0.58
3 0.80 0.58 0.61

Table 2: Average similarity scores on cycle consistency examples. Model 1: pretrained UMT, Model 2:
CPCGRU+WNdec, Model 3: CPCWN+WNdec

6



5.3 Model Architecture

Figure 3: High-level architecture. We extend the encoding step of the UMT network [2] by applying
contrastive predictive coding to produce context latent representations of the input audio sample rather than
only a WaveNet encoder. We utilize the same decoder architecture and use the context latent sequences to
condition the decoders and produce translated samples in another instrument domain.

7



Figure 4: The convolutional encoder genc and GRU autoregressor gar architectures used to generate a
latent representation z and context latent representation c for the CPCGRU+WNdec model. genc consists of
sequential 1-D convolutional layers with the listed stride, kernel sizes, sizes, and number of output channels.
All activations were ReLU activations and no biases were used. The GRU layer has a 64-dimensional hidden
state.

8



Figure 5: The convolutional encoder genc and WaveNet autoregressor gar architectures used to generate a
latent representation z and context latent representation c for the CPCWN+WNdec model. genc consists
of sequential 1-D convolutional layers with the listed stride, kernel sizes, and number of output channels.
All activations were ReLU activations and no biases were used. The WaveNet encoder consists of several
dilated 1-D convolutions and traditional 1-D convolutions with skip connections. A final 1-D convolution
and average pooling in the WaveNet encoder then produces our context latent sequence ct.

9



Figure 6: The WaveNet decoder created for each output domain. The architecture consists of traditional
convolutions and dilated causal convolutions as described in the original WaveNet paper [7]. The corre-
sponding context latent sequence c to a raw audio sequence x can be used to condition the decoder.

10



Figure 7: A domain confusion discriminator on the latent space discourages domain-specific embeddings.
The architecture is exactly the same as the one used in UMT [2], which largely consists of sequential 1-D
convolutional layers.

11


	Introduction
	Methods
	Results
	Discussion
	Appendix
	InfoNCELoss Equation and Pseudocode
	Supplemental Results
	Model Architecture


