1. Which of the following equations are functions?

(a)
$$x + y = 64$$

(b) $x^2 + y^2 = 64$
(c) $x^3 + y^3 = 64$
(d) $|y| - |x| = 3$
(e) $y = e^x$

(f)
$$y = \sin x$$

- 2. For the equations that are functions, which are one-to-one or onto?
- 3. Which functions above have an inverse function? What does a function need to be to have an inverse function?
- 4. Let $A = \{1, 2, 3\}$. Determine if the following relations are functions:
 - (a) $R1 = \{(1,2), (2,1)\}.$
 - (b) $R2 = \{(1,2), (2,1), (3,2)\}.$
- 5. Determine if the following functions are injective, surjective, or neither. Also state if they are bijective.
 - (a) $f: \{0, 1\} \to \mathbb{N}$ where f(0) = 1 and f(1) = 0.
 - (b) $f : \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^2$.
 - (c) f: JHU students \rightarrow Countries in the world where f(student) = country where student is from.
 - (d) $f : \mathbb{R} \to \mathbb{R}$ where f(x) = x.
 - (e) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = \frac{x}{2}$.

Note: $\mathbb{N} = \{0, 1, 2, ...\}$

- 6. Let $A = \{0, 1\}$ and $B = \{b : b \subseteq A \times A\}$. Let F be the set of all possible functions from A to A.
 - (a) Does there exist an injection from F to B? If so, give an injection and prove it is indeed an injection. If not, prove why such a function does not exist.
 - (b) Does there exist a surjection from F to B? If so, give a surjection and prove it is indeed a surjection. If not, prove why such a function does not exist.
 - (c) Does there exist a bijection from F to B? Why or why not?
- 7. Two sets A and B are said to have the same cardinality (same size $\Leftrightarrow |A| = |B|$), if and only if we can construct a bijection from $A \to B$ (or, equivalently, from B to A). Let E be the set of even natural numbers, that is, $E = \{0, 2, 4, \ldots\}$ and O be the set of odd natural numbers, $O = \{1, 3, 5, \ldots\}$. Show the following:
 - (a) |E| = |O|.
 - (b) $|E| = |\mathbb{N}|.$
- 8. Let A be a set with finite cardinality n > 0.
 - (a) Prove that the number of subsets of A of size k is equal to the number of subsets of A of size n k. *Hint:* Construct a bijection (be sure to show your function is indeed a bijection).
 - (b) Prove that the number of odd-cardinality subsets of A is equal to the number of even-cardinality subsets of A. *Hint:* Construct a bijection (be sure to show your function is indeed a bijection).

Post Spring Break Check-in

- Now that the semester is about half-way over, how are you feeling going into the 2nd half?
- Are you going to class?
- What are your study habits like? How are you preparing for exams? Any tips that have worked with you to share with the group?
- What do you do for yourself what do you do to relieve stress?
- 9. For $a, b \in \mathbb{N}$, prove that $gcd(b, a) = gcd (b, a \mod b)$.
- 10. Suppose $a \equiv b \mod m$ and $c \equiv d \mod m$. Let $n \in \mathbb{Z}_+$. Prove the following two statements:
 - (a) $ac \equiv bd \mod m$
 - (b) $a^n \equiv b^n \mod m$
- 11. For any $n \in \mathbb{Z}_+$, define the relation R_n on \mathbb{Z} by

 $R_n = \{(x, y) \mid x \text{ and } y \text{ have the same remainder when divided by } n\}.$

Prove that R_n is an equivalence relation.

- 12. Let a and b be integers, not both zero. Prove that the smallest positive integer of the form ax + by, where x and y are integers, is gcd(a, b).
- 13. Consider the two pairs (a = 16133, b = 5814) and (a = 128374, b = 59345). For each pair, do the following:
 - (a) Compute gcd(a, b).
 - (b) Find values of x and y such that ax + by = gcd(a, b).
 - (c) Determine whether a and b are relatively prime. If they are, find the modular (multiplicative) inverse of b mod a. In other words, find c such that $bc \equiv 1 \mod a$.